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It  is shown that the energies of A M O ' s  (Ek) for an arbitrary homonuclear  
alternating system can be given with the following expression (identical for 
A M O  with o~- and/3-spin): 

-k- A r x12~1/2  Eko-=a+�89 k[Y~,HJ ) o'~o~,fi 

where: ek are the MO energies, obtained by means of the conventional H F  
method;  8 and Ak are correlation corrections depending on the one-center  (y), 
resp. two-center  (y,~) coulomb integrals. 

By means of the above method,  where the interactions between non-adjacent  
A O ' s  are taken into account, it is shown that the energy gap of an infinite 
polyene, in the ~-- electron approximation,  is different from zero, regardless of 
the presence or absence of C - - C  bond alternation. This means that in 
adiabatic approximation an infinite atomic chain, satisfying the B o r n - K a r m a n  
condition, is not a metal  model  but a dielectric one. 

Key words: Polyenes - band structures of - - long-range coulomb interaction 
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1. Introduction 

The problem for the nature of the gound state of polyenes is of general interest for 
the theoretical chemistry. In 7r-electron approximation the polyenes are a realistic 
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model, the study of which gives grounds for drawing conclusions about the energy 
spectrum of one-dimensional systems in general. The purpose of this work is to 
investigate the influence of the electron correlation upon the width of the energy 
gap of infinite polyenes, taking into account the long-range Coulomb interaction. 
This problem is of special interest, as the width of the gap defines the optical and 
dielectrical properties of one-dimensional systems. The information about the 
influence of the electron correlation upon the gap width is very valuable for the 
study of the structural transitions of these systems. 

Different authors [1-6] have treated the problem for the nature of the ground 
state of polyenes in rr-electron approximation, taking into account the electron 
correlation (see also reviews [7], [8]). However, all these researches were done in 
the limits of the Hubbard approximation [9], except in some studies [10] where 
the Coulomb integrals between neighbouring AO's were included in the treat- 
ment (see also papers [11], [12]). In the works of Fukutome [13] and of Paldus and 
Cizek [14] is shown that the long-range Coulomb interaction could play an 
essential role in obtaining qualitatively and quantitatively correct results. 

The influence of the long-range Coulomb interaction upon the energy spectrum of 
polyenes was treated in the work of Misurkin and Ovchinnikov [15], but the study 
was done only for the case of ideal geometry, i.e. no bond alternation was taken 
into account. 

The ab initio calculations [16] show that the stabile configuration of an infinite 
all-trans polyene chain (at T = 0~ with bond alternation is characterised by the 
following bondlengths: Rd = 1.343 A,, R~ = 1.443 ~.  The calculations were per- 
formed with a STO basis: C(8s4p) H(4s). These values are in agreement with the 
ab initio results of Kertesz, Koller and Azman [17]. 

The ab initio HF-Crystal-Orbital calculations of Andr~ and Leroy [18] show that 
polyenes without bond alternation have lower energy than those with alternation 
of the bondlengths. 

It is not discussed here which structure is more stable - with or without alternation 
of the bondlengths - because the studies are performed in ~--electron approxima- 
tion. It has only to be noted that in this approximation our calculations show quite 
a small difference in the ground state energies of the two structures, being of the 
energy order of the vibrational quanta. 

2. Method and Derivation of the Main Relations 

In a previous work [19] was shown that if the alternating molecular orbitals 
(AMO's) are represented as: 

Ik~) = sin 0k]k)+cos 0k[/~) 

= sin 0klk -cos 

the AMO energies of an arbitrary alternating system with a singlet ground state 
is related with the energies ek(e~), obtained by means of the conventional 
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HF-method (LCAO-SCF-MO-PPP) ,  by the following expression: 

1 
Ek. = 5(ek + e# + <k [ f~Ik} + </~If~I/~>) a= ek. 

ek. = [�88 - e# + <k ly~Ik) - <#] f~l#>) 2 + <k If~l#)] '/~ 

O ' ~  0G ~ 

sin 2 G  - {klf~l#) 
6: ko- 

(1) 

If we denote by /3  the energy operator  in the conventional HF-method (F]k) = 
eklk> and/~1/~) -- ed#>) and by F ~ -  the operator  for the o-(o- ~ a, fi) - orbitals in 
the AMO-method ,  we can define the operator  f in the following way: 

In the general case the operators ]~ depend on the orbitals ]k~) and ]kt~}. For 
homonuclear  alternating systems the general expressions for the matrix elements 
of ff'~, derived in the above mentioned paper [19], may be considerably simplified 
(the AO's  I/x} and lu) belong to different subsystems - w i t h  a star ]~) and without 
star 1~)) and can be written down as: 

k 

F ~  = ~ + �89 + &/ 

1 8 F . ~  = ~ + ~ , -  ~, 

F ~  = F,., + 2 7,~, Z Ck,Ck~ COS 2 Ok 
k 

/ j  core 1 

= < ~ l h ( 1 )  . . . .  j~>=<~Jh(1) . . . .  i.>. 

In the above equations ck~(~) are the coefficients of the MO's y~, are the 
two-center Coulomb integrals, P ~  is the bond order between the/~th and the uth 
AO (the bond order is different from zero only for pairs of AO's  belonging to 
different subsystems, i.e. P~* = P~; = 0). 

As far as only the resonance integrals/3~~ ~ between neighbouring AO's  are taken 
into account and because P#~ = P ~  = 0, the matrix elements F~;~ = FB~ = 0. 

Corresponding to the above derived expressions, the matrix elements of the 
operator  f r in the MO basis ]k} and f ) ,  and the expressions for the AMO energies 
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have the following form: 

(/~IP]/~) = - ( k i p ] k )  

<kJf~lf) = a~ ( ( ,2, 1/2 

= o~ +�89177 1/2 

= ~ + ~-~ ( a ~  a + e ~ )  1/~. 

The minus sign " - "  refers to the b~ 
antibonding AMO's.  In Hubbard  approxi~. 

t32 2..~ e2~1/2 
Ekrr  = o~ + i T  :t: ~ Y kJ �9 

For the correlation corrections we obtain the equations: 
87 

8 = ~ sin 2 G  = ~ (823,2 + p~)1/2 

(2) 
g, and the sign plus "+" ,  to the 

~n Eq. (2) turns into: 

(2a) 

(3) 

- 2  0 2 4 

]k) (4N+2)I /2  e~t~k+(2g+l~kl]2/x +I)+_~Y. e-~E~k-2"~~ # )  . (4) 

For the antibonding MO's  ]/~) the sign of the sum with even indices is negative 

mk= 2N+l  k, -N<-k<-N 

&k=arctg{_]Cl:~ 

From Eq. (4) we obtain for the bond orders and correlation parameters 3 a n d ,  the 
expressions (N -~ co): 

P 2 s - 1  = P l ,2 s  = po , - (2s-1)  

= 2/r cos [& - (2s - 1)o)] do) 

their number, for a definite system, depending on the number of neighbours 
included in the interaction. 

The MO's  (Bloch functions) for a cyclic polyene with 4 N + 2  AO's  could be 
represented in the following way: 

- 3  - 1  1 3 
d S d S d S d S 
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p2d  1 = P 0 , 2 d - 1  =p1 , - (2d - -1 )  

rr/2 I"  
= 2/~r Jo cos [4~ + (2d - 1)co] &o 

s , d = l ,  2,3 . . . . .  

8 f~r/2 do) 

7r aO ( 8 2 T Z + P 2 ( r . . o ) )  1/2 

a 1 I o ' ~ / 2 p ( w ) c o s [ & + ( 2 d - 1 ) w ] d w  
"/'2d-1 ~- 2P2d--1 - rr (82,/2 +P2(w))~72 

1 1 [ ~ / 2 p ( w )  c o s [ & - ( 2 s - 1 ) w ] d w  
r2s-1 -- gP2s-1 -- --77" a 0 (82 , /2  q-P2(( .o) ) l /2  

(5) 

(6) 

(7) 

The number of parameters r2d-1 and r2~-1, respectively, is determined by the 
number of the neighbours between which the two-center Coulomb integrals (Y,) 
are taken into account. 

The solution of the above coupled Eqs. (5-7) can be found in Appendix 1. 

In case that the matrix elements of the PPP-Hamilton operator [20], 

Fu~. = o~ + �89 

f ocor~ 1p p - 5  ~*~Tr 
F . ~ =  11) 

[ - -  g t*,,Tt,,,, 

/x and v are neighbouring AO's 

/x and v are non-neighbouring AO's 

are calculated by means of the orbitaIs (4), and only the resonance integrals 
between neighbouring AO's  are taken into account, we obtain the following 
expressions for the MO energies (fl,(d)> 0): 

e(o,)  = E  * * 
Ix l* "r u 

- -  ] - -  ,-~ core = O/ "~- ~` / -~/~  s COS ( ~  --  0)) "4Y J~ 7 re COS ((~ -~- 0)) 

+�89 ~ P2d--lT2d--X cos[~b+(2d-1)o)]  
d = l  

+ 1  Z P2s-XT2s-x  COS [ ~ - - ( 2 S - -  1)o)]  
s= l  

- - _ < ~ o _ <  (8) 
2 -  - ~ "  

Including only the first neighbours we obtain: 

e(o)) = (fl~ore +�89 cos (~ +co)+(fl~ ~ + �89 cos (& -co) 

= ~ cos  (~ +~) + W  ~ cos  (~ - ~ )  
= ( ( / 3 ~  e .  2 e .  ~ - f l ,  ) +4f ie  B,  COS2w) 1/2~ (8a) 
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For P(w) is obtained, respectively: 

P(w ) = ]e(0) ){- 0(0)) 

= [e(w)l-  E 7"2d-i3'2d-1 COS [4 + (2d - 1)w] 
d=l  

- - •  7"2s-1'Y2s- 1 COS [ 4  - - ( 2 s -  1)0)] 
s 

=/3~ore COS ( 4  + 0 ) )  + / 3 s  c~ COS ( 4 - - 0 ) )  

+ Y. r~d-13"2a-1 cos [4 + ( 2 d -  1)o)] 
d = l  

-}- ~, T2s--13'2s-- 1 COS [ 4  - ( 2 s  - 1 )w]  (9) 
s=l  

where: 
? 

T2d-1 = P 2 d - 1  - -  T 2 d - 1  

? 
' r 2 s - 1  = P 2 s - 1  - -  "/'2s-1. 

In Hubbard  approximation P(0)) turns to: 

p(0)) =/3 }ore COS (4 + 0) ) +/3 core COS (4 -- W) (9a) 

In case that no bond alternation exists (/3, =/3u =/3, y2s-~ = 3"2a-1): 

P(oJ) = 2/3 cos oJ + 2  Y~ r'2p-~y2p-1 cos ( 2 p -  1)0). (10) 
P=I  

In Eq. (8) the summation over  s and d, and the summation over  p in Eq. (10), 
respectively, depends on the number  of neighbours included in the interaction. 

For the width of the energy gap (AE~) is obtained 

AEoo = 2E(0) = 7r/2) = 2(aZT 2 + P2('lr/2))l/2. (11) 

In case of ideal geometry (R, = Re), P(~r/2) = 0 and therefore: 

AEoo = 263,. (12) 

3. Parametrisation 

The calculations are per formed using the following approximations for the 
resonance and the Coulomb integrals: the Coulomb integrals are calculated in two 
ways. By means of the formula [21]: 

2 
e 

e2/y + tR~  (13) 

2 
e 

%~ = 1.328 + tR~  

and using formula: 

"gNu = ea/rR~v (14) 

where the dimensionless paramete r  t is varied. If t = 1, Eq. (13) coincides with the 
Mataga-Nishimoto  approximation [22]. 
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The  d e p e n d e n c e  of the  r e s o n a n c e  in tegra ls  on the  b o n d  d i s tance  is given by  the 
r e l a t i on /3  . . . .  =/3~or~ . S / S o ,  w h e r e  So is the  ove r l ap  in tegra l  for  the  b o n d l e n g t h  

R = 1.40 A ( Z c  = 3.18).  

A n  a l l - t rans  conf igura t ion  with  va len t  angles  & c c c  = 120 ~ is chose  for  the  
po lyenes .  

The  length  of the  uni t  cell  2R0 = R~ + Rd, should  also be  t r e a t e d  as a va r i ab le  
p a r a m e t e r ,  as t he re  is no i n fo rma t ion  a b o u t  the  g e o m e t r y  of po lyenes  at  T ~ = 0~ 

4. Results and Discussion 

T h e  ene rgy  gap of the  po lyenes  is in the  r ange  2 .2 -2 .5  e V  [ l  1], [23-25] .  

The  va lue  of the  r e s o n a n c e  in tegra l ,  c o r r e s p o n d i n g  to the  M a t a g a - N i s h i m o t o  [22] 
a p p r o x i m a t i o n ,  is d e t e r m i n e d  for  h y d r o c a r b o n s  by  m e a n s  of the  P P P - L C I  m e t h o d  
[26] to be  /3~ ~  eV. W h e n  this p a r a m e t e r  is i n t roduc e d  in the  cal-  
cula t ions ,  a r a the r  high va lue  for  the  ene rgy  gap is ob t a ined :  A E ~ =  
6.15 eV(R0 = 1.40 A ,  for  a chain  wi thou t  b o n d  a l t e rna t ion) .  Too  high is also the  
va lue  AE~  = 6.30 eV,  o b t a i n e d  by  m e a n s  of  the  p a r a m e t r i s a t i o n  used  in p a p e r  
[15]: /3~ ~ = 2 . 4 e V ,  R o =  1 . 4 0 A ,  y =  11.13 eV. The  resul ts  p r e s e n t e d  in the  

a b o v e  p a p e r  [15] differ  ma t e r i a l l y  f rom ours.  

R a t h e r  high values  for  the  ene rgy  gap ( A E ~ >  5 eV) are  o b t a i n e d  using the  
M a t a g a - N i s h i m o t o  a p p r o x i m a t i o n  for  all the  poss ib le  bond leng ths  in the  r ange  

1.34 A~<R0 -< 1.48 ~ .  

I t  was shown [27] tha t  good  resul ts  for  the  energy  of e l ec t ron  exc i ta t ion  of 
a l t e rna t ing  h y d r o c a r b o n s  could  be  o b t a i n e d  by  m e a n s  of the  fo l lowing 
p a r a m e t r i s a t i o n : / 3 ~  ~ = - 2 . 5 9  e V  (Ro  = 1.40 A) ;  for  the  p a r a m e t e r  t in Eq.  (13) 
is o b t a i n e d  the va lue  t = 0.5. A s  the  op t ima l  va lue  of this p a r a m e t e r  is d e t e r m i n e d  

Table 1. Dependence of the energy gap AE~(eV) 
on the parameter t (Eq. [13]), on the length of the 
unit cell (2R0 = Rs +Ra), and on the bond alter- 
nation (R s = Ro + r, Ra = R o -  r). The values for 
AE~ obtained with values for r allowing no non- 
trivial solutions of the Eqs. [5]-[7] (8 = 0, ~- = 0) 
are marked with a. The calculations are done with 
/3~ ~ = -2.59 eV 

t = 1.0 t = 0.5 t = 0.4 
R0 r AE~o 2xEoo AE~ 

1.38 0.00 5.15 3.02 2.18 
0.01 5.16 3.06 2.34 
0.02 5.18 3.21 2.97 a 

1.39 0.00 5.28 3.16 2.31 
0.01 5.29 3.19 2.41 
0.02 5.30 3.30 3.30 a 

1.40 0.00 5.40 3.28 2.46 
0.01 5.41 3.32 2.54 
0.02 5.42 3.41 3.30 a 

1.41 0.00 5.53 3.44 2.59 
0.01 5.53 3.47 2.66 
0.02 5.54 3.54 3.30 a 

1.42 0.00 5.66 3.58 2.74 
0.01 5.67 3.60 2.79 
0.02 5.67 3.65 3.30 a 
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Fig 1.  Dependence  of the calculated energy gap (Eq. (12); 3' = 10.842 eV;/3~ ~ = - 2 . 5 9  eV) of an 
infinite polyene without bond alternation on parameter t in Eq. (13) and on the number of neighbours 
(n), between which the two-center Coulomb integrals are taken into account. ( 1 ) -  t = 1.0; ( 2 ) - t  = 
0.5; ( 3 ) - t = 0 . 4 ;  ( 4 ) - t = 0 . 3 .  In Hubbard approximation in all cases are obtained the values: 
6 = 0 .3934  and A E~o = 263' = 8.53 eV. 

in the paper [27] for hydrocarbons with small number of ~r-electrons, in the 
present work t is a variational parameter. In Table 1 are represented values of the 
energy gap, calculated with different values of parameter t. It is obvious from this 
table (see also Fig. 1), that the optimal value of parameter t is t = 0.4, when 
~ o r e  = -2.59 eV. 

In Table 2 are represented data for the energy gap, calculated by means of the 
approximation (14) for the Coulomb integrals. 

It is obvious from the both tables that satisfactory values for the energy gap 
(comparable to the experiment) can be obtained using different sets of 
parameters. 

The problem for the choice of parametrisation in the formalism applied in the 
present study could be solved through investigation of a greater number of 
homonuclear systems (such investigations being already in progress), and for 
uniquely defined geometries. 

The result obtained in the present paper is essential in that aspect: in the 
framework of the applied model and approximations the energy gap of both 
geometries- wi th-  and without bond alternation- is different from zero. This 
result might effect significantly the consideration of Peierls's [28] structural 
transitions of polyenes. 
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Table 2. Dependence  of the energy gap of a 
polyene without bond alternation (Rs = R a  = 

R0 = 1.40 ~ )  on the parameter  t in the expres- 
sion for the two-center  coulomb integrals (Eq. 
(14)) 

y ~  = 1 /  t R , ~  

I: 3' = 11.13 eV, 3~o~e = - 2 . 4 0  eV; 
II: y = 10.84 eV. 3 . . . .  = - 2 . 5 9  eV 

t 

1.00 
1.32 
1.62 

zXE~(eV) 

2.50 
4.46 
7.29 

t 

1.00 
1.10 
1.50 

II 

2~E=o(eV) 

1.88 
2.46 (2.84 a) 
4.35 

a This value is obtained for Rs = 1.42 A and Ra  = 

1.38 A. 

In Hubbard approximation the condition for existence of a nontrivial solution 
(8 r 0) of Eq. (5) has the form: 

,~/2 &o f 

~r = Jo (82+ (/3o/y)2[(s _ d ) 2 + 4 s d  cos 2 w])l/z 

f =/2 &o <___Y 

/30 |Jo ((s - d)2 + 4 s d  cos z co) I/2 

o r  

rr3o/ 3" < fo ~/2 
doJ 

((s - d) 2 + 4sd cos 2 w)1/2 - (/3o/y)crit. (15) 

The critical value (/30/Y)orit, beyond which no non-trivial solution (8 ~ 0) of Eq. (5) 
exists, depends on the bond alternation of the polyene chain, i.e. on the values of 
s = 3s//3o and d =/3a/3o. In case that s = d = 1, tends (30/Y)crit-+ CO, i.e. Eq. (5) 
possesses non-trivial solutions for any values of the pa ramete r s /3  and y. For 
130 = 2.59 eV and 3' = 10.842 eV the ratio/30/3" = 0.2389. The latter is smaller 
than the critical value determined by Eq. (15); this is valid for all the values 
1-> s-> 0.876 and 1 _< d-< 1.i36,  that correspond to the variation of AR0 in the 
range 0-< Ro-< 0.08 ~ (at ARo = 0.08 A, (3/3') , i t  = 0.545; at the limit s = 0, d = 1, 
is (/3/3")crit = 0 .5 ) .  

With an increase of the number of neighbours among which the Coulomb 
interaction is taken into account, the conditions for existence of non-trivial 
solutions (8 r 0, 3' # 0) of Eqs. (5)-(7) show stronger dependence on the bond 
alternation, compared to the Hubbard approximation case. Not every type of 
alternation, for which non-trivial solution of Eq. (5) in Hubbard approximation 
exists, allows a non-trivial solution of Eqs. (5)-(7). This, for instance, is obvious in 
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0 ,4 

0,3 

0~2 

0,1 (1) oR'c.o =0, 113 

I I I I I I l 

0 1 3 5 7 9 11 13 15 17 n 

Fig. 2. Dependence of parameter 6 on the number of neighbours (n) which are included in the coulomb 
interaction. (1.) polyene with equal bondlengths Rs = Ra = 1.40 ,~, t =  0.4. (2) polyene with bond 
alternation: Rs = 1.42 ~ ,  Re = 1.38 A., t = 0.4. In both c a s e s  ~ )o re  = -2.59 eV. 

Fig. 2, where the dependence of parameter  3 on the number of neighbours 
included in the Coulomb interaction is shown. The greater the number of 
neighbours included in the interaction, the smaller the values of the parameters 3 
and ~- respectively. In the cases of stronger alternation there exist no non-trivial 
solutions of Eqs. (5)-(7). 

Appendix 

The number of equations in the coupled Eqs. (5)-(7) depends on the number of 
neighbours included in the interaction. In the Hubbard approximation all the 
quantities ~- are equal to zero. If only the first neighbours are taken into account, 
only % and Cd are different from zero and the total number of equations is reduced 
to three. If the second neighbours are also included, five equations are obtained, 
etc. 

Eqs. (5)-(7) can be solved by means of the following iterative procedure: From 
Eq. (5) 6 is determined in Hubbard approximation. With this value 6 0 are 

0 calculated all the quantities ~-~ and T2d-1 using Eqs. (6) and (7). These values r 
1 1 determine now a new value 31 to obtain new ~'z~-i and ~'2a-1. The iterative 

procedure continues until self-consistence for 6 and ~- with a chosen precision is 
achieved. 
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